Abstract
AbstractEnergetic particle injections are commonly observed in Jupiter's magnetosphere and have important impacts on the radiation belts. We evaluate the roles of electron injections in the dynamics of whistler‐mode waves and relativistic electrons using Juno measurements and wave‐particle interaction modeling. The Juno spacecraft observed injected electron flux bursts at energies up to 300 keV at M shell ∼11 near the magnetic equator during perijove‐31. The electron injections are related to chorus wave bursts at 0.05–0.5 fce frequencies, where fce is the electron gyrofrequency. The electron pitch angle distributions are anisotropic, peaking near 90° pitch angle, and the fluxes are high during injections. We calculate the whistler‐mode wave growth rates using the observed electron distributions and linear theory. The frequency spectrum of the wave growth rate is consistent with that of the observed chorus magnetic intensity, suggesting that the observed electron injections provide free energy to generate whistler‐mode chorus waves. We further use quasilinear theory to model the impacts of chorus waves on 0.1–10 MeV electrons. Our modeling shows that the chorus waves could cause the pitch angle scattering loss of electrons at <1 MeV energies and accelerate relativistic electrons at multiple MeV energies in Jupiter's outer radiation belt. The electron injections also provide an important seed population at several hundred keV energies to support the acceleration to higher energies. Our wave‐particle interaction modeling demonstrates the energy flow from the electron injections to the relativistic electron population through the medium of whistler‐mode waves in Jupiter's outer radiation belt.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.