Abstract

Vortex beams carrying orbital angular momentum (OAM) with the doughnut-shaped intensity distribution can be employed in free-space optical (FSO) communication links to circumvent obstructions. However, the size of the receiver aperture is proportional to the size of obstructions, which seriously constrains the application of OAM beams in this scenario. In this paper, we propose a method to generate bottle vortex beams (BVBs) with a parabolic trajectory by manipulating the radial phase distribution of conventional OAM beams. Meanwhile, the trajectory of BVBs generated are highly compatible with the predesigned trajectory by using this method. Moreover, we evaluate the free-space transmission performance of BVBs under atmospheric turbulence and limited receiving aperture. The results show that BVBs have better OAM FSO communication link performance compared with conventional OAM beams and Bessel beams. In addition, the performance of the BVBs circumventing obstructions is further investigated. The simulation results show that when setting the atmospheric turbulence strength D/r0 = 2 and the obstruction size of 40 mm, the average received optical power of the BVBs captured by a limited receiving aperture diameter (d = 40 mm) is improved about 7 dB and 3 dB compared to conventional OAM beams and Bessel beams, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.