Abstract

ABSTRACTGeneration and accumulation of atomic vacancy due to pair annihilation of edge dislocations during plastic slip deformation of metallic materials are numerically evaluated by crystal plasticity analysis. Dislocation density-based models are utilised in the deformation analysis and a theoretical model for the generation of atomic vacancies is introduced. Purely uniform single- and double-slip deformations are analysed and results show that the evolution of the vacancy density depends largely on the microstructure length scale and multiplication of slip activity on different slip systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.