Abstract
Many LED lighting applications involve the design of multiple optical surfaces. A prime example is a single lens with two refractive surfaces. In this paper, we consider an LED light source approximated as a point and a far-field target intensity. Using Hamilton's characteristic functions, the design problem is converted into two generalized Monge-Ampère equations by deriving a generating function for each optical surface. The generating function is a generalization of the cost function in optimal transport theory. The generalized Monge-Ampère equations are solved using an iterative least-squares algorithm. To compute the first optical surface, we choose an intermediate far-field target intensity. By choosing different intermediate target intensities based on the source and target intensity, we develop a "knob" to distribute the refractive power over both surfaces of the lens. We apply the algorithm on two example problems and show it is capable of producing complicated target distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Optical Society of America. A, Optics, image science, and vision
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.