Abstract
In this paper we elucidate the connection between various notions of differentiability in the Wasserstein space: some have been introduced intrinsically (in the Wasserstein space, by using typical objects from the theory of Optimal Transport) and used by various authors to study gradient flows, Hamiltonian flows, and Hamilton–Jacobi equations in this context. Another notion is extrinsic and arises from the identification of the Wasserstein space with the Hilbert space of square-integrable random variables on a non-atomic probability space. As a consequence, the classical theory of well-posedness for viscosity solutions for Hamilton–Jacobi equations in infinite-dimensional Hilbert spaces is brought to bear on well-posedness for Hamilton–Jacobi equations in the Wasserstein space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.