Abstract

In order to increase cutting width, decrease tool path length, and improve machining efficiency, the spiral enter assistant line (SEAL) is embedded into a convex pocket to plan a spiral tool path. First, the inner offset curve of the pocket boundary undergoes equidistant division to acquire the external equidistant points. Subsequently, principal component analysis (PCA) and length factors optimization are employed to obtain SEAL. Next, vector operation is performed on the external equidistant points and SEAL to calculate the corresponding internal points. After connecting the external equidistant points and the corresponding internal points, a B-spline spiral tool path is planned based on linear interpolation and B-spline curve fitting. In addition, the length factors can be adjusted to modify the distribution and length of the tool path. Theoretical analysis and machining experiments demonstrate that compared to other conventional algorithms, the spiral tool path presented in this study has obvious advantages on cutting width, tool path length, and machining efficiency. These advantages are especially pronounced when the major principal axis is much longer than the minor principal axis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.