Abstract
We introduce a procedure to generate scattering states which display trajectorylike wave function patterns in wave transport through complex scatterers. These deterministic scattering states feature the dual property of being eigenstates to the Wigner-Smith time-delay matrix Q and to the transmission matrix t(†)t with classical (noiseless) transmission eigenvalues close to 0 or 1. Our procedure to create such beamlike states is based solely on the scattering matrix and successfully tested numerically for regular, chaotic, and disordered cavities. These results pave the way for the experimental realization of highly collimated wave fronts in transport through complex media with possible applications such as secure and low-power communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.