Abstract
Environmental noise and disorder play critical roles in quantum particle and wave transport in complex media, including solid-state and biological systems. Recent work has predicted that coupling between noisy environments and disordered systems, in which coherent transport has been arrested due to localization effects, could actually enhance transport. Photonic integrated circuits are promising platforms for studying such effects, with a central goal being the development of large systems providing low-loss, high-fidelity control over all parameters of the transport problem. Here, we fully map the role of disorder in quantum transport using a nanophotonic processor consisting of a mesh of 88 generalized beamsplitters programmable on microsecond timescales. Over 64,400 transport experiments, we observe several distinct transport regimes, including environment-assisted quantum transport and the ''quantum Goldilocks'' regime in strong, statically disordered discrete-time systems. Low loss and high-fidelity programmable transformations make this nanophotonic processor a promising platform for many-boson quantum simulation experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.