Abstract

SUMMARYThe CUDA model for graphics processing units (GPUs) presents the programmer with a plethora of different programming options. These includes different memory types, different memory access methods and different data types. Identifying which options to use and when is a non‐trivial exercise. This paper explores the effect of these different options on the performance of a routine that evaluates sparse matrix–vector products (SpMV) across three different generations of NVIDIA GPU hardware. A process for analysing performance and selecting the subset of implementations that perform best is proposed. The potential for mapping sparse matrix attributes to optimal CUDA SpMV implementations is discussed. Copyright © 2011 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.