Abstract

There have been recent reports of unexpectedly large velocity dipole in the NRAO VLA Sky Survey (NVSS) data. We investigate whether the excess in the NVSS dipole reported can be of cosmological origin. We assume a long wavelength inhomogeneous scalar perturbation of the form $\ensuremath{\alpha}\mathrm{sin}(\ensuremath{\kappa}z)$ and study its effects on the matter density contrasts. Assuming an ideal fluid model, we calculate, in the linear regime, the contribution of the inhomogeneous mode to the density contrast. We calculate the expected dipole in the large scale structure (LSS) for two cases, first assuming that the mode is still superhorizon everywhere, and second assuming the mode is subhorizon but has crossed the horizon deep in matter domination and is subhorizon everywhere in the region of the survey (NVSS). In both cases, we find that such an inhomogeneous scalar perturbation is sufficient to generate the reported values of dipole anisotropy in LSS. For the superhorizon modes, we find values which are consistent with both cosmic microwave background and NVSS results. We also predict signatures for the model which can be tested by future observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.