Abstract

beta-Galactosidase (Escherichia coli) was immobilized through its thiol groups on thiolsulfinate-agarose gel. After enzyme immobilization, different nano-environments were generated by reacting the excess of gel-bound thiolsulfinate moieties with 2-mercaptoethanesulfonic acid (S-gel), glutathione (G-gel), cysteamine (C-gel), and mercaptoethanol (M-gel). Concerning thermal stability at 50 degrees C, the G-gel and the M-gel derivatives were the most stable with residual activity values of 67% and 45%, respectively. The stability in several solvent systems was studied: ethyl acetate (1.6% vol/vol), ethylene glycol (50% vol/vol), and 2-propanol (50% vol/vol). In ethyl acetate, both the M-gel and S-gel were highly stabilized; the time required for activity to decay to 80% of the initial activity was increased 29-fold for the M-gel and 20-fold for the S-gel with respect to the soluble enzyme. The G-gel was the least stable of all the derivatives. The different behaviors of the derivatives in thermal and solvent stability studies suggest that each nano-environment contributes differently to the enzyme stability, depending on the denaturing conditions. Therefore, it may be possible to tailor the matrix surface to maximize enzyme stability in particular applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.