Abstract
We demonstrate the perfect generation of four Fano resonances with different polarizations in the mid-infrared regime through a hybrid graphene-dielectric metasurface consisting of three pieces of silicon embedded with graphene sheets over the CaF2 substrate. Through monitoring the variations of polarization extinction ratio of the transmitting fields, a tiny difference of analyte refractive index can readily be detected from the drastic changes at Fano resonant frequencies in both co- and cross-linearly polarized components. Especially, the reconfigurable characteristic of graphene would be capable of tuning the detecting spectrum by pairwise regulating the four resonances. The proposed design should pave the way for more advanced bio-chemical sensing and environmental monitoring using metadevices with different polarized Fano resonances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.