Abstract
Herein, the canonical Fowler–Nordheim theory is extended by computing the zero‐temperature transmission probability for the more general case of a barrier described by a fractional power law. An exact analytical formula is derived, written in terms of Gauss hypergeometric functions, that fully capture the transmission probability for this generalized problem, including screened interaction with the image potential. First, the quality of approximation against the so far most advanced formulation of Fowler–Nordheim, where the transmission is given in terms of elliptic integrals, is benchmarked. In the following, as the barrier is given by a power law, in detail, the dependence of the transmission probability on the exponent of the power law is analyzed. The formalism is compared with results of numerical calculations and its possible experimental relevance is discussed. Finally, it is discussed how the presented solution can be linked in some specific cases with an exact quantum‐mechanical solution of the quantum well problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.