Abstract

A generalized Tomonaga-Schwinger equation, holding on the entire boundary of a finite spacetime region, has recently been considered as a tool for studying particle scattering amplitudes in background-independent quantum field theory. The equation has been derived using lattice techniques under assumptions on the existence of the continuum limit. Here I show that in the context of continuous Euclidean field theory the equation can be directly derived from the functional integral formalism, using a technique based on Hadamard's formula for the variation of the propagator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.