Abstract

Random number generators (RNG) based on quantum mechanics are captivating due to their security and unpredictability compared to conventional generators, such as pseudo-random number generators and hardware-random number generators. This work analyzes evolutions in the extractable amount of randomness with increasing the Hilbert space dimension, state preparation subspace, or measurement subspace in a class of semi-device-independent quantum-RNG, where bounding the states’ overlap is the core assumption, built on the prepare-and-measure scheme. We further discuss the effect of these factors on the complexity and draw a conclusion on the optimal scenario. We investigate the generic case of time-bin encoding scheme, define various input (state preparation) and outcome (measurement) subspaces, and discuss the optimal scenarios to obtain maximum entropy. Several input designs were experimentally tested and analyzed for their conceivable outcome arrangements. We evaluated their performance by considering the device’s imperfections, particularly the after-pulsing effect and dark counts of the detectors. Finally, we demonstrate that this approach can boost the system entropy, resulting in more extractable randomness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call