Abstract
Generalized ray tracing is an algorithm for calculating the geometrical parameters of a wave front in the neighborhood of a traced ray. These calculations are applied, surface by surface, for each traced ray, to an optical system being designed. These calculations determine the two points of contact of each traced ray with the two sheets of a caustic surface. The caustic surfaces are, in fact, aberrated three-dimensional images of object points and therefore contain all information on the geometrical aberrations of the subject lens. Generalized bending is a procedure in which the curvature of a pair of adjacent spherical refracting surfaces, their separation, and the distance to the next succeeding or next preceding surface may be changed so that any paraxial ray is left invariant except at the two affected surfaces. In this study we show that the displacement of a caustic point caused by a generalized bending is in essentially a straight line, that the direction of the displacement is determined by which refracting surfaces are selected, and that the magnitude of the displacement is proportional to the logarithm of the bending parameter. This suggests that caustic surfaces can be used as a merit function in the optical design process, that the merit functions can be calculated by means of generalized ray tracing, and that generalized bending provides an effective means of optimizing the design when included in a feedback loop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.