Abstract

A new generalized quasi-spectral model predictive static programming (GS-MPSP) method is proposed to efficiently solve a class of terminal-constrained optimal control problems with specified or free terminal time. A spectral representation method is used to model the profile of the control vector, then an infinite-dimensional optimization problem in a continuous-time framework is transformed into a small-dimensional static programming problem minimizing a certain performance index. Using the Gauss quadrature collocation method, the computation of the sensitivity matrix can be converted to the solution of a group of linear equations and algebraic summation at a few collocation nodes. Subsequently, the spectral coefficients and terminal time are efficiently obtained to eliminate terminal output deviations by solving the static programming problem. A simulation case with a scenario of intercepting a high-speed target with a specified impact angle in the midcourse phase was conducted. The results indicate that the proposed GS-MPSP approach has increased computational efficiency compared to traditional methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.