Abstract
This paper presents the Generalized Predictive Control (GPC) strategy based on Artificial Neural Network (ANN) plant model. To obtain the step and the free process responses which are needed in the generalized predictive control strategy we iteratively use a multilayer feedforward ANN as a one-step-ahead predictor. A bioprocess was chosen as a realistic nonlinear SISO system to demonstrate the feasibility and the performance of this control scheme. A comparison was made between our approach and the adaptive GPC (AGPC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.