Abstract

A new Takagi-Sugeno system based Kernel ridge regression (TS-KRR) was proposed.The TS-KRR strategy is implemented for both adaptive and offline identification.The TS-KRR was integrated with the GPC to control discrete-time nonlinear systems.The proposed controller showed good results in TS fuzzy GPC with offline modeling.The adaptive TS fuzzy GPC showed good results in dealing with disturbances. In this paper, a novel fuzzy Generalized Predictive Control (GPC) is proposed for discrete-time nonlinear systems via Takagi-Sugeno system based Kernel Ridge Regression (TS-KRR). The TS-KRR strategy approximates the unknown nonlinear systems by learning the Takagi-Sugeno (TS) fuzzy parameters from the input-output data. Two main steps are required to construct the TS-KRR: the first step is to use a clustering algorithm such as the clustering based Particle Swarm Optimization (PSO) algorithm that separates the input data into clusters and obtains the antecedent TS fuzzy model parameters. In the second step, the consequent TS fuzzy parameters are obtained using a Kernel ridge regression algorithm. Furthermore, the TS based predictive control is created by integrating the TS-KRR into the Generalized Predictive Controller. Next, an adaptive, online, version of TS-KRR is proposed and integrated with the GPC controller resulting an efficient adaptive fuzzy generalized predictive control methodology that can deal with most of the industrial plants and has the ability to deal with disturbances and variations of the model parameters. In the adaptive TS-KRR algorithm, the antecedent parameters are initialized with a simple K-means algorithm and updated using a simple gradient algorithm. Then, the consequent parameters are obtained using the sliding-window Kernel Recursive Least squares (KRLS) algorithm. Finally, two nonlinear systems: A surge tank and Continuous Stirred Tank Reactor (CSTR) systems were used to investigate the performance of the new adaptive TS-KRR GPC controller. Furthermore, the results obtained by the adaptive TS-KRR GPC controller were compared with two other controllers. The numerical results demonstrate the reliability of the proposed adaptive TS-KRR GPC method for discrete-time nonlinear systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.