Abstract

Pickands constants play a crucial role in the asymptotic theory of Gaussian processes. They are commonly defined as the limits of a sequence of expectations involving fractional Brownian motions and, as such, their exact value is often unknown. Recently, Dieker and Yakir (Bernoulli, 20(3), 1600–1619, 2014) derived a novel representation of Pickands constant as a simple expected value that does not involve a limit operation. In this paper we show that the notion of Pickands constants and their corresponding Dieker–Yakir representations can be extended to a large class of stochastic processes, including general Gaussian and Levy processes. We furthermore develop a link to extreme value theory and show that Pickands-type constants coincide with certain constants arising in the study of max-stable processes with mixed moving maxima representations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.