Abstract

This paper continues the investigation of the first two authors begun in part I. It is shown that approximate amenability and approximate contractibility are the same properties, as are uniform approximate amenability and amenability. Bounded approximate contractibility and bounded approximate amenability are characterized by the existence of suitable operator bounded approximate identities for the diagonal ideal. Results are given on Banach sequence algebras, Lipschitz algebras and Beurling algebras, and on the crucial role of approximate identities. A new proof is given for a result due to N. Grønbæk on characterizing of amenability for Beurling algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.