Abstract
We answer several open questions in the theory of approximate amenability for Banach algebras. First we give examples of Banach algebras which are boundedly approximately amenable but which do not have bounded approximate identities. This answers a question open since the year 2000 when Ghahramani and Loy founded the notion of approximate amenability. We give a nice condition for a co-direct-sum of amenable Banach algebras to be approximately amenable, which gives us a reasonably large and varied class of such examples. Then we examine our examples in some detail, and thereby find answers to other open questions: the two notions of bounded approximate amenability and bounded approximate contractibility are not the same; the direct-sum of two approximately amenable Banach algebras does not have to be approximately amenable; and a 1-codimensional closed ideal in a boundedly approximately amenable Banach algebra need not be approximately amenable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.