Abstract

Given a completely positive map, we introduce a set of algebras that we refer to as its generalized multiplicative domains. These algebras are generalizations of the traditional multiplicative domain of a completely positive map and we derive a characterization of them in the unital, trace-preserving case, in other words the case of unital quantum channels, that extends Choi's characterization of the multiplicative domains of unital maps. We also derive a characterization that is in the same flavour as a well-known characterization of bimodules, and we use these algebras to provide a new representation-theoretic description of quantum error-correcting codes that extends previous results for unitarily-correctable codes, noiseless subsystems and decoherence-free subspaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.