Abstract

This paper presents a generalized energy storage system model for voltage and angle stability analysis. The proposed solution allows modeling most common energy storage technologies through a given set of linear differential algebraic equations (DAEs). In particular, the paper considers, but is not limited to, compressed air, superconducting magnetic, electrochemical capacitor and battery energy storage devices. While able to cope with a variety of different technologies, the proposed generalized model proves to be accurate for angle and voltage stability analysis, as it includes a balanced, fundamental-frequency model of the voltage source converter (VSC) and the dynamics of the dc link. Regulators with inclusion of hard limits are also taken into account. The transient behavior of the generalized model is compared with detailed fundamental-frequency balanced models as well as commonly-used simplified models of energy storage devices. A comprehensive case study based on the WSCC 9-bus test system is presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.