Abstract
The paper proposes modal reduction method of the dynamic systems composed of linear nonconservative sub-systems coupled by nonlinear discrete couplings. Classical approach to the modal reduction is based on thetransformation of the generalized coordinates by the real modal submatrix of the linear conservative part of thewhole system. In case of modal synthesis method, transformation matrices are the real modal submatrices of theconservative part of mutually isolated subsystems. Rotating mechanical systems contain gyroscopic effects andother influences of rotation and damping. The paper introduces a generalized modal reduction method based on thecomplex modal values of the whole system or the isolated subsystems. Their complex eigenvalues and eigenvectorsare used for transformation of the generalized coordinates and reduction of the number of degrees of freedom. Thepresented method is focused on vibrating rotating systems with gyroscopic and dissipative effects and nonlinearinternal couplings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.