Abstract
This paper presents a generalized cutting force and regenerative chatter stability prediction for the modulated turning (MT) process. Uncut chip thickness is modeled by considering current tool kinematics and undulated (previously generated) surface topography for any given modulation condition in the feed direction. It is found that chip formation is governed by the undulated surface generated in multiple past spindle rotations. Uncut chip thickness is computed analytically in the form of trigonometric functions, and cutting forces are predicted by making use of orthogonal cutting mechanics. Regenerative chatter stability of the process is also modelled. Analytical semi-discretization-based solution is developed to accurately predict the stability lobe diagrams (SLDs) of the MT process. Predicted stability lobes are validated through numerical time-domain simulations and experimentally via orthogonal (plunge) turning tests. It is found that as compared to conventional single-point continuous turning, regenerative stability of MT exhibits multiple (3) regenerative delay loops and long out-of-cut duration in-between tool engagement stabilizes the process to reach up to 2x higher stable widths/depths as compared to the conventional continuous turning.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have