Abstract
In this paper, we develop a new class of double generalized linear models, introducing a random-effect component in the link function describing the linear predictor related to the precision parameter. This is a useful procedure to take into account extra variability and also to make the model more robust. The Bayesian paradigm is adopted to make inference in this class of models. Samples of the joint posterior distribution are drawn using standard Monte Carlo Markov Chain procedures. Finally, we illustrate this algorithm by considering simulated and real data sets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have