Abstract
From the quantum mechanical point of view, the electronic characteristics of quasicrystals are determined by the nature of their eigenstates. A practicable way to obtain information about the properties of these wave functions is studying the scaling behavior of the generalized inverse participation numbers $$Z_q \sim N - ^{D_q (q - 1)}$$ with the system size N. In particular, we investigate d-dimensional quasiperiodic models based on different metallic-mean quasiperiodic sequences. We obtain the eigenstates of the one-dimensional metallic-mean chains by numerical calculations for a tight-binding model. Higher dimensional solutions of the associated generalized labyrinth tiling are then constructed by a product approach from the one-dimensional solutions. Numerical results suggest that the relation D d = dD 1d holds for these models. Using the product structure of the labyrinth tiling we prove that this relation is always satisfied for the silver-mean model and that the scaling exponents approach this relation for large system sizes also for the other metallic-mean systems.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have