Abstract

We study the nonequilibrium dynamics of random spin chains that remain integrable (i.e., solvable via Bethe ansatz): because of correlations in the disorder, these systems escape localization and feature ballistically spreading quasiparticles. We derive a generalized hydrodynamic theory for dynamics in such random integrable systems, including diffusive corrections due to disorder, and use it to study non-equilibrium energy and spin transport. We show that diffusive corrections to the ballistic propagation of quasiparticles can arise even in noninteracting settings, in sharp contrast with clean integrable systems. This implies that operator fronts broaden diffusively in random integrable systems. By tuning parameters in the disorder distribution, one can drive this model through an unusual phase transition, between a phase where all wavefunctions are delocalized and a phase in which low-energy wavefunctions are quasi-localized (in a sense we specify). Both phases have ballistic transport; however, in the quasi-localized phase, local autocorrelation functions decay with an anomalous power law, and the density of states diverges at low energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.