Abstract
We study a new class of time inhomogeneous P\'olya-type urn schemes and give optimal rates of convergence for the distribution of the properly scaled number of balls of a given color to nearly the full class of generalized gamma distributions with integer parameters, a class which includes the Rayleigh, half-normal and gamma distributions. Our main tool is Stein's method combined with characterizing the generalized gamma limiting distributions as fixed points of distributional transformations related to the equilibrium distributional transformation from renewal theory. We identify special cases of these urn models in recursive constructions of random walk paths and trees, yielding rates of convergence for local time and height statistics of simple random walk paths, as well as for the size of random subtrees of uniformly random binary and plane trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.