Abstract

We first show a way of constructing a path of length $2n$ from a pair of paths of length $n$ by means of which one may arrive at many results on pairs of paths of length $n$, simply by examining properties of paths of length $2n$. Secondly, for two random walk paths of length $n, A$ and $B$, with vertical coordinates $A(i)$ and $B(i)$ respectively, at times $i = 0,1,\cdots, n$, and such that for some $m A(m) > B(m)$ but $A(i) = B(i)$ when $i < m$, we define $d_{A,B}(i) = \frac{1}{2}(A(i) - B(i))$. For obvious reasons $A(i) - B(i)$ is always even, which incidentally, implies that the intersection of two paths are points with integral coordinates. We find that $d_{A,B}$ can be graphed against time by a three-valued random walk path, i.e. a path which may have horizontal steps. Questions about the pair consisting of $A$ and $B$ may then be answered by observing the path described by $d_{A,B}$. Results in the theory of three-valued random walk paths can thus be translated into results about pairs of random walk paths of equal length.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.