Abstract

In the construction process of radial basis function (RBF) networks, two common crucial issues arise: the selection of RBF centers and the effective utilization of the given source without encountering the overfitting problem. Another important issue is the fault tolerant capability. That is, when noise or faults exist in a trained network, it is crucial that the network’s performance does not undergo significant deterioration or decrease. However, without employing a fault tolerant procedure, a trained RBF network may exhibit significantly poor performance. Unfortunately, most existing algorithms are unable to simultaneously address all of the aforementioned issues. This paper proposes fault tolerant training algorithms that can simultaneously select RBF nodes and train RBF output weights. Additionally, our algorithms can directly control the number of RBF nodes in an explicit manner, eliminating the need for a time-consuming procedure to tune the regularization parameter and achieve the target RBF network size. Based on simulation results, our algorithms demonstrate improved test set performance when more RBF nodes are used, effectively utilizing the given source without encountering the overfitting problem. This paper first defines a fault tolerant objective function, which includes a term to suppress the effects of weight faults and weight noise. This term also prevents the issue of overfitting, resulting in better test set performance when more RBF nodes are utilized. With the defined objective function, the training process is designed to solve a generalized M-sparse problem by incorporating an ℓ0-norm constraint. The ℓ0-norm constraint allows us to directly and explicitly control the number of RBF nodes. To address the generalized M-sparse problem, we introduce the noise-resistant iterative hard thresholding (NR-IHT) algorithm. The convergence properties of the NR-IHT algorithm are subsequently discussed theoretically. To further enhance performance, we incorporate the momentum concept into the NR-IHT algorithm, referring to the modified version as “NR-IHT-Mom”. Simulation results show that both the NR-IHT algorithm and the NR-IHT-Mom algorithm outperform several state-of-the-art comparison algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.