Abstract

In this paper, we discuss the relationship among the generalized Fermat, double Fermat, and Newton sequences. In particular, we show that every double Fermat sequence is a generalized Fermat sequence, and the set of generalized Fermat sequences, as well as the set of double Fermat sequences, is closed under term-by-term multiplication. We also prove that every Newton sequence is a generalized Fermat sequence and vice versa. Finally, we show that double Fermat sequences are Newton sequences generated by certain sequences of integers. An approach of symbolic dynamical systems is used to obtain congruence identities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.