Abstract
The numerical integration of particle trajectories in curved spacetimes is fundamental for obtaining realistic models of the particle dynamics around massive compact objects such as black holes and neutron stars. Generalized algorithms capable of handling generic metrics are required for studies of both standard spacetimes (Schwarzschild and Kerr metrics) and non-standard spacetimes (e.g. Schwarzschild metric plus non-classical perturbations or multiple black hole metrics). The most commonly employed explicit numerical schemes (e.g. Runge-Kutta) are incapable of producing highly accurate results at critical points, e.g. in the regions close to the event horizon where gravity causes extreme curvature of the spacetime, at an acceptable computational cost. Here, we describe a generalized algorithm for the numerical integration of time-like (massive particles) and null (photons) geodesics in any given 3+1 split spacetime. We introduce a new, exactly energy-conserving implicit integration scheme based on the preservation of the underlying Hamiltonian, and we compare its properties with a standard fourth-order Runge-Kutta explicit scheme and an implicit midpoint scheme. We test the numerical performance of the three schemes against analytic solutions of particle and photon orbits in Schwarzschild and Kerr spacetimes. We also prove the versatility of our framework in handling more exotic metrics such as Morris-Thorne wormholes and quantum-perturbed Schwarzschild black holes. The generalized approach is also discussed in the perspective of future extensions to more complex particle dynamics, e.g. the addition of the Lorentz force acting on charged particles, which allows for test particle diagnostics in GRMHD simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.