Abstract

In this work we study, on a finite and periodic lattice, a class of one-dimensional (bimolecular and single-species) reaction-diffusion models that cannot be mapped onto free-fermion models. We extend the conventional empty-interval method, also called interparticle distribution function (IPDF) method, by introducing a string function, which is simply related to relevant physical quantities. As an illustration, we specifically consider a model that cannot be solved directly by the conventional IPDF method and that can be viewed as a generalization of the voter model and/or as an epidemic model. We also consider the reversible diffusion-coagulation model with input of particles and determine other reaction-diffusion models that can be mapped onto the latter via suitable similarity transformations. Finally we study the problem of the propagation of a wave front from an inhomogeneous initial configuration and note that the mean-field scenario predicted by Fisher's equation is not valid for the one-dimensional (microscopic) models under consideration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call