Abstract
Radiance temperature is one of the most important and widely used concepts in radiation thermometry. The usual definition of radiance temperature does not strictly apply for complex situations, such as when surrounding radiation is non-negligible or when corrections are applied to measurements made using an inappropriate emissivity setting. A novel concept, generalized effective radiance temperature (GERT), that adopts a graybody as the reference radiator is proposed in this study to express and explain the actual measurands that exist extensively in practical radiation thermometry applications; for example, a measurement result by a spectral-band radiation thermometer whose instrumental emissivity setting is less than 1. An effective wavelength approach has been developed to elucidate the relationship between a thermometer-dependent temperature (reading from an actual spectral-band radiation thermometer) and the object-side parameter GERT. The characteristics of GERT and the effective wavelength of a GERT measurement are discussed. Choosing an arbitrary emissivity setting to correct for the emissivity of a real target is equivalent to using this value as the emissivity of the reference graybody of the GERT. The GERT can be used in calibrations of both sources and thermometers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have