Abstract
An identity is derived from the Einstein equation for any hypersurface $\mathcal{H}$ which can be foliated by spacelike two-dimensional surfaces. In the case where the hypersurface is null, this identity coincides with the two-dimensional Navier-Stokes-like equation obtained by Damour in the membrane approach to a black hole event horizon. In the case where $\mathcal{H}$ is spacelike or null and the 2-surfaces are marginally trapped, this identity applies to Hayward's trapping horizons and to the related dynamical horizons recently introduced by Ashtekar and Krishnan. The identity involves a normal fundamental form (normal connection 1-form) of the 2-surface, which can be viewed as a generalization to non-null hypersurfaces of the Hajicek 1-form used by Damour. This 1-form is also used to define the angular momentum of the horizon. The generalized Damour-Navier-Stokes equation leads then to a simple evolution equation for the angular momentum.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have