Abstract

Exact confidence intervals for a proportion of total variance, based on pivotal quantities, only exist for mixed linear models having two variance components. Generalized confidence intervals (GCIs) introduced by Weerahandi [1993. Generalized confidence intervals (Corr: 94V89 p726). J. Am. Statist. Assoc. 88, 899–905] are based on generalized pivotal quantities (GPQs) and can be constructed for a much wider range of models. In this paper, the author investigates the coverage probabilities, as well as the utility of GCIs, for a proportion of total variance in mixed linear models having more than two variance components. Particular attention is given to the formation of GPQs and GCIs in mixed linear models having three variance components in situations where the data exhibit complete balance, partial balance, and partial imbalance. The GCI procedure is quite general and provides a useful method to construct confidence intervals in a variety of applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.