Abstract
Code-based cryptography is a promising candidate for post-quantum public-key encryption. The classic McEliece system uses binary Goppa codes, which are known for their good error correction capability. However, the key generation and decoding procedures of the classic McEliece system have a high computation complexity. Recently, q-ary concatenated codes over Gaussian integers were proposed for the McEliece cryptosystem together with the one-Mannheim error channel, where the error values are limited to Mannheim weight one. For this channel, concatenated codes over Gaussian integers achieve a higher error correction capability than maximum distance separable (MDS) codes with bounded minimum distance decoding. This improves the work factor regarding decoding attacks based on information-set decoding. This work proposes an improved construction for codes over Gaussian integers. These generalized concatenated codes extent the rate region where the work factor is beneficial compared to MDS codes. They allow for shorter public keys for the same level of security as the classic Goppa codes. Such codes are beneficial for lightweight code-based cryptosystems
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have