Abstract

This paper presents a novel circuit model for eddy-current effects for multi-winding transformers. It presents the theoretical framework to model eddy currents applicable to layer or disk windings with n-layers for two-dimensional (2-D) transformer arrangements. The new white-box model is physical, dual, and leakage reversible. Additionally, it does not have mutually coupled elements or negative inductors. The paper presents a complete circuit for transformer windings (including capacitances) and core. The model accurately predicts the variation of resistance (dc component, skin, and proximity effects) and leakage inductance of windings from dc to hundreds of kilohertz. Being derived from the principle of duality, the circuit elements can be physically related one-to-one to the distribution of flux and current in the winding geometry. A practical winding discretization, based on field penetration depth for the given frequency, allows estimating the parameters using very simple formulae requiring only geometrical information and properties of materials. Model verification is done using finite element simulations. It is shown that the circuit model matches very well with 2-D FEM simulations. The circuit can be easily implemented in any circuit simulation software like EMTP-RV, PSCAD, ATP, etc., by simply dragging and dropping elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.