Abstract

This paper was to price and hedge a quanto floating range accrual note (QFRAN) by an affine term structure model with affine-jump processes. We first generalized the affine transform proposed by Duffie et al. (2000) under both the domestic and foreign risk-neutral measures with a change of measure, which provides a flexible structure to value quanto derivatives. Then, we provided semi-analytic pricing and hedging solutions for QFRAN under a four-factor affine-jump model with the stochastic mean, stochastic volatility, and jumps. The numerical results demonstrated that both the common and local factors significantly affect the value and hedging strategy of QFRAN. Notably, the factor of stochastic mean plays the most important role in either valuation or hedging. This study suggested that ignorance of these factors in a term-structure model will result in significant pricing and hedging errors in QFRAN. In summary, this study provided flexible and easily implementable solutions in valuing quanto derivatives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.