Abstract

A partial difference set having parameters $(n^2, r(n-1), n+r^2-3r,r^2-r)$ is called a Latin square type partial difference set, while a partial difference set having parameters $(n^2, r(n+1), -n+r^2+3r,r^2+r)$ is called a negative Latin square type partial difference set. In this paper, we generalize well-known negative Latin square type partial difference sets derived from the theory of cyclotomy. We use the partial difference sets in elementary abelian groups to generate analogous partial difference sets in nonelementary abelian groups of the form $(Z_p)^{4s} \times (Z_{p^s})^4$. It is believed that this is the first construction of negative Latin square type partial difference sets in nonelementary abelian $p$-groups where the $p$ can be any prime number. We also give a generalization of subsets of Type Q, partial difference sets consisting of one fourth of the nonidentity elements from the group, to nonelementary abelian groups. Finally, we give a similar product construction of negative Latin square type partial difference sets in the additive groups of $(F_q)^{4t+2}$ for an integer $t \geq 1$. This construction results in some new parameters of strongly regular graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.