Abstract

AbstractA partial difference set (PDS) having parameters (n2, r(n−1), n+r2−3r, r2−r) is called a Latin square type PDS, while a PDS having parameters (n2, r(n+1), −n+r2+3r, r2 +r) is called a negative Latin square type PDS. There are relatively few known constructions of negative Latin square type PDSs, and nearly all of these are in elementary abelian groups. We show that there are three different groups of order 256 that have all possible negative Latin square type parameters. We then give generalized constructions of negative Latin square type PDSs in 2‐groups. We conclude by discussing how these results fit into the context of amorphic association schemes and by stating some open problems. © 2009 Wiley Periodicals, Inc. J Combin Designs 17: 266‐282, 2009

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.