Abstract

The aim in this paper is to provide generalizations of two interesting entries in Ramanujan's notebooks that relate sums involving the derivatives of a function φ(t) evaluated at 0 and 1. The generalizations obtained are derived with the help of expressions for the Gauss hypergeometric function 2 F 1(−n, a; 2a+j; 2) for non-negative integer n and j=0,±1, …,±5 given very recently by Kim et al. [Generalizations of Kummer's second theorem with applications, Comput. Math. Math. Phys. 50(3) (2010), pp. 387–402] and extension of Gauss’ summation theorem available in the literature. Several special cases that are closely related to Ramanujan's results are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.