Abstract

The hydrodynamic forces acting on a quantized vortex in a superfluid have long been a highly controversial issue. A new approach, originally developed in the astrophysical context of compact stars, is presented to determine these forces by considering small perturbations of the asymptotically uniform flows in the region far from the vortex in the framework of Landau–Khalatnikov two-fluid model. Focusing on the irrotational part of the flows in the Helmholtz decomposition, the classical Kutta–Joukowski theorem from ordinary hydrodynamics is thus generalized to superfluid systems. The same method is applied to predict the hydrodynamic forces acting on vortices in cold atomic condensates and superfluid mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.