Abstract

In this paper, with the assumptions that an infectious disease has a fixed latent period in a population and the latent individuals of the population may disperse, we reformulate an SIR model for the population living in two patches (cities, towns, or countries etc.), which is a generalization of the classic Kermack-McKendrick SIR model. The model is given by a system of delay differential equations with a fixed delay accounting for the latency and non-local terms caused by the mobility of the individuals during the latent period. We analytically show that the model preserves some properties that the classic Kermack-McKendrick SIR model possesses: the disease always dies out, leaving a certain portion of the susceptible population untouched (called final sizes). Although we can not determine the two final sizes, we are able to show that the ratio of the final sizes in the two patches is totally determined by the ratio of the dispersion rates of the susceptible individuals between the two patches. We also explore numerically the patterns by which the disease dies out, and find that the new model may have very rich patterns for the disease to die out. In particular, it allows multiple outbreaks of the disease before it goes to extinction, strongly contrasting to the classic Kermack-McKendrick SIR model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call