Abstract

We demonstrate how direct simulation of stochastic, individual-based models can be combined with continuum numerical analysis techniques to study the dynamics of evolving diseases. % Sidestepping the necessity of obtaining explicit population-level models, the approach analyzes the (unavailable in closed form) `coarse' macroscopic equations, estimating the necessary quantities through appropriately initialized, short `bursts' of individual-based dynamic simulation. % We illustrate this approach by analyzing a stochastic and discrete model for the evolution of disease agents caused by point mutations within individual hosts. % Building up from classical SIR and SIRS models, our example uses a one-dimensional lattice for variant space, and assumes a finite number of individuals. % Macroscopic computational tasks enabled through this approach include stationary state computation, coarse projective integration, parametric continuation and stability analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call