Abstract
An fuzzy classification rules extraction model for online analytical mining (OLAM) was explained in this article. The efficient integration of the concept of data warehousing, online analytical processing (OLAP) and data mining systems converges to OLAM results in an efficient decision support system. Even after associative classification proved as most efficient classification technique there is a lack of associative classification proposals in field of OLAM. While most of existing data cube models claims their superiority over other the fuzzy multidimensional data cubes proved to be more intuitive in user perspective and effectively manage data imprecision. Considering these factors, in this paper we propose an associative classification model which can perform classification over fuzzy data cubes. Our method aimed to improve accuracy and intuitive ness of classification model using fuzzy concepts and hierarchical relations. We also proposed a generalization-based criterion for ranking associative classification rules to improve classifier accuracy. The model accuracy tested on UCI standard database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.