Abstract
This chapter focuses on data cube technology. Data warehouse systems provide online analytical processing (OLAP) tools for interactive analysis of multidimensional data at varied granularity levels. OLAP tools typically use the data cube and a multidimensional data model to provide flexible access to summarized data. A data cube can interactively explore the data in a multidimensional way through OLAP operations like drill-down (to see more specialized data such as total sales per city) or roll-up (to see the data at a more generalized level such as total sales per country). Although the data cube concept was originally intended for OLAP, it is also useful for data mining. Multidimensional data mining is an approach to data mining that integrates OLAP-based data analysis with knowledge discovery techniques. It is also known as exploratory multidimensional data mining and online analytical mining (OLAM). It searches for interesting patterns by exploring the data in multidimensional space. Users can interactively drill down or roll up to varying abstraction levels to find classification models, clusters, predictive rules, and outliers. Methods for data cube computation and methods for multidimensional data analysis are focused on. Precomputing a data cube (or parts of a data cube) allows for fast accessing of summarized data. Given the high dimensionality of most data, multidimensional analysis can run into performance bottlenecks. Therefore, it is important to study data cube computation techniques. Data cube technology provides many effective and scalable methods for cube computation. Studying these methods also help in the understanding and further development of scalable methods for other data mining tasks such as the discovery of frequent patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.