Abstract

The information theoretical learnability of folding networks, a very successful approach capable of dealing with tree structured inputs, is examined. We find bounds on the VC, pseudo-, and fat shattering dimension of folding networks with various activation functions. As a consequence, valid generalization of folding networks can be guaranteed. However, distribution independent bounds on the generalization error cannot exist in principle. We propose two approaches which take the specific distribution into account and allow us to derive explicit bounds on the deviation of the empirical error from the real error of a learning algorithm. The first approach requires the probability of large trees to be limited a priori and the second approach deals with situations where the maximum input height in a concrete learning example is restricted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.